22 using func_t = std::function<double(
double)>;
23 using tuple4_t = std::tuple<double, double, bool, int>;
25 using func2_t = std::function<std::tuple<double, double>(
double)>;
29 using detail::RootFind1dBase::RootFind1dBase;
44 std::tuple<double, double, bool, int>
root(
59 std::tuple<double, double, bool, int>
root(
60 const std::function<
double(
double)>& f,
61 const std::function<
double(
double)>& f_der,
double x0 = 0)
const;
75 std::tuple<double, double, bool, int>
root(
76 const std::function<std::tuple<double, double>(
double)>& f,
93 tuple4_t _newton(
const func2_t& f,
double x0)
const;
109 tuple4_t _newton_strict(
const func2_t& f,
double x0)
const;
std::tuple< double, double, bool, int > root(const isce3::core::Poly1d &f, double x0=0) const
Find a root of the function "f(x)" closest to its initial value via Newton approach.
Definition RootFind1dNewton.cpp:10